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ON SOME ORDERED CONTINUA OF POWER 2%
CONTAINING A DENSE SUBSET OF POWER ¥,.
JOSEF NOVAK, Praha.

(Received July 26th, 1950.)

Let P be a lexicographically ordered point-set whose elements = are
transfinite sequences of zeros and ones z = zy; ... %3 ... (A < wy).
After identifying the neighbour sequences we get an ordered conti-
nuum Q. In the paper six different systems Pz, &k =1, 2, ..., 6 are
constructed the elements of which are disjoint closed intervals and

one-point-sets of Q. Every P is an ordered continuum of power 2¥o,

Some properties of the continua Yy, are studied, for instance the sepa-

rability, the character of points, the homogeneity, the similarity and so

on. At the end the necessary and sufficient condition is given for the

ordered continuum satisfying the Souslin property to be a linear con-
tinuum.

In the present paper the method of identification of points in certain
intervals on a given ordered continuum is used to construct new ordered
continua (Theorem 1). The basic ordered, continuum is the continuum @
the elements of which are transfinite sequences of zeros and, ones zy; ...
... @; ... (A < w,), which is lexicographically ordered and in which some
identifications of pairs of sequences have been made. After certain further
identifications of points in @ we get ordered continua P;, Py, Vs, V4, Vs,

Pe of power 2%. containing no dense countable subset and such that the
least power of a subset which is dense in them is &; (Theorems 2 and 3).
The continuum ¥, contains points with characters ¢y, and ¢, the con-
tinuum Y, contains points with characters cgg, €y, €19 and ¢;;, P4 contains
points with characters cyg, ¢o; and c¢;; and the continuum %P, contains
points with characters ¢y, and ¢;;. The continuum %, is similar to P, re-
versed and 9 is similar to P, reversed. Every continuum Y is similar
to a subset of P,. All continua P (k = 1, 2, ..., 6) show a certain degree
of homogeneity, every continuum % being quasi-homogeneous in the
sense that in every interval on Y there is a subinterval similar to ¥
(Theorem 4). Every continuum % possesses the following property x:
Any disjoint uncountable system of intervals on {); contains an uncoun-
table subsystem of intervals whose left end-points form an increasing or
a decreasing sequence of points in Pz (Theorem 7).
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In this paper a necessary and sufficient condition is given for an
ordered continuum ' possessing the Souslin property to be a linear set;
it is the similarity of € to an ordered subset of ¥ (Theorem 8).

At the end some new types of ordered continua of power 2% are
constructed and a list is given of 15 possible kinds of ordered continua

of power 2% with a dense subset of power ¥, . Some of them (6) are proved
to be non-existent whereas the existence of some others (6) is secured by
the continua Y (k= 1,2,...,6). As to 3 remaining continua some
problems are put forward concerning their existence and properties.

I

Let P be an ordered continuum. Let {#*}g¢ be an ordinary or trans-
finite sequence of points a* e P, v << w,, w, being the least ordinal of
power 8,. We define the convergence in this manner: the point x e P is
a left (right) limit of {a*} if either the one-point-set (x) or every closed
intervall) (y, > ({x, >) contains almost all points 2* i. e. all points a7,
v = v, where , is a suitable ordinal << w,. The left convergence will be
denoted by 2" — x and the right convergence by x <—a*. According to
F. HausDoRFF?) the character of a point x € P is ¢, if ¢ and o are the least

. . . . . 2
ordinals for which there exists an increasing sequence {2"}¢2 and a decrea-

sing sequence {y*}0° such that 2* — x < y*. Further we define the cha-
racter of an interval {x, y) or (z, y) as ¢y, provided that there is a charac-
ter ¢y of the end-point  and a character ¢y, of the end-point y in P.

Definition. Let P be an ordered point-set and let & be a disjoint
system of intervals and one-point-sets such that Y& C P. Let us define
X <Y for any two elements X, Y of @ if x < y for all points 2 ¢ X and
all 4 € Y, the sign <C indicating the order-relation in P. It is easy to prove
that < is an order-relation in the system &. Without inconvenience we
shall use the symbol <C instead of <.

We say that we have thus got the ordered system & by identifying
certain points of the ordered point-set P. The intervals X C P, X e S

will be called interval-points and the other elements (z) e @ common
points of &.

Theorem 1. Let P be an ordered continuum. Let P bea disjoint system
of one-point-sets and closed intervals of P containing more than one element
and such that Y = P. Then Y is an ordered continuum.

1) The point-set containing no more than one element will not be counted
among intervals. Closed intervals will be denoted by < ) and open intervals by ().
Every ordered continuum is supposed to have two different end-points.

2) F. Hausdorff, Grundzige der Mengenlehre, Leipzig (1914), p. 143. In ordered
continua the character cys is defined for all points except both end-points.
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Proof. The system P contains at least two elements. Let U and B
be two non-void subsystems of P such that A U B = P and A << B. The
couple (U, B) cannot be a saltus in P. Indeed, there are points of P lying
between two disjoint closed intervals or between a closed interval and
a point outside it or between two different points of P. Neither can
(U, B) be a gap in P; otherwise (YA, UDV) would be a gap in the conti-
naum P. Evidently, P contains the first and the last element.

In the sequel we shall always use the symbol P for systems ordered
in the above mentioned way.

Lemma 1. Let P be an ordered continuuimn. Let P be a disjoint system
of one-point-sets and closed intervals of P such that Y = P. Then the
character of a common point (x) € P in Y is the same as of the corresponding
point x € P in P and the character of an tnterval-point y € P in P vs the same
as that one of the interval y C P in P.

Proof. Let ze P be any element in P with the character cy. Let
x e Pand y € P be the left and right end-point of z C P if z is an interval-
point and let @ = y € P correspond to the point z, if it is a common point.
Because the point z has a character ¢y, in 9 both points x and y are diffe-
rent from the end-points of the continuum P. Therefore there exist the
characters of the points x and y in P. Let them be ¢y and ¢4 (in the
case when x = y wehave o’ = rand v’ = ¢'). Let {2”}2" be an increasing
sequence of points in P such that 2” — x. As Y = P, there s, for any 2*,
an element u” € P such that a* e w*. Because P is a disjoint system of
one-point-sets and intervals which is, according to Theorem 1, an ordered
continuum we get a non-decreasing sequence %* — z in . Therefore
0 < o'. On the other hand, if {z*}¢? is an increasing sequence of elements
in P such that 2 — 2 we have 3’ — 2 in P where y”ez". Therefore
0" < p, so that g = p'. It is easy to prove in a similar way that ¢ = ¢’.

II.

Let P be a set whose elements « are transfinite sequences of zeros and

ones:
z=[2;] =2, ... % ... (A< )

where x; = 0 or = 1 for 1 << w,. Let us define [2;] << [y;] if there is an
index ¢ such that x; = y; for A << & whereas x5 = 0 < ys = 1. Hence, P
is a lexicographically ordered set with saltus and without gaps?®) con-
taining 2% points. The saltus will be avoided by the following identi-
fications: [x;] = [y;] if and only if 1. a3 = y; for all 1 << @, or 2. there
exists the least ordinal ¢ such that x; = y; for 1 < 0 and 25 + ys = 1,

3) Cf. W. Sierpiriski: Sur une propriété des ensembles ordonnés, Fund. Math.
36 (1949); Lemma I, p. 57.
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whereas x; == x5 and ¥z = ¥s for 2 > §. In such a way we get and ordered
continuum @ (without any saltus and gaps) containing 2% points.

After the identification there is no more a one-to-one correspondence
between points z € ) and the symbols [x;]. Therefore we shall distinguish
between the points x and the symbols [z;], which will be called (dyadic)
developments of points x. There are points in @ with one development only
and points with two different developments. The end-points of @ will be
denoted by a and b. The corresponding developments are 000... and
111....

The point z € @ will be called a point of first, second or third kind if
there exists a development [x;] of x in which ; = 1 or 2; = 0 only tor
a countable number of 1's, i. e. if there exists the least ordinal 0(x) << w,
such that a; = 0 for 2 > O(x) or the least ordinal 1(x) << w, such that
x; = 1 for A > 1(z). The point « € @ will be called a point of first kind if
there exists a limit4) ordinal 0(x), of second kind if there exists a limit
ordinal 1(x), of third kind if there exists an isolated O(x). In the last case
there exists a 1(x) and the equality holds 0(x) = 1(z). It is easy to see
that there exist two different developments of a point z € ¢ if and only
if @ is a point of the third kind.

Let [x;] be a development of a point « € . We shall use ordindlsuper-
scripts p only in sequences {#2}£ and {a#}] of points #z e @, x < u < f8
and 2 €@, y < pu < 0 with developments [#2s], [*#] where Hxy = xy
except ¥z, = 0 and ah = xy except af = 1.

Let [2;], [y2] be developments of the points x € Q of the first kind,
y € @ of the second kind and let [2;] and [¢;] be two different developments
of the point z € @ of the third kind, where z; = 0 only for a countable
number of A’s. Let us consider the following sequences:

R G P IR N (e IR U s

The third and the fifth are increasing, the second and the sixth are
decreasing uncountable sequences. As x is a point of the first kind we have
@ == a. Let {2, ) C @ be any closed interval; denote the development of
2’ by [x:\]. Then there exists the least ordinal § such that 2 = 0 << 25 = 1.
Evidently 6 < 0(x) so that #ve{a’,z) for d + 1< u < O(x). Since
0(x) =  there are x; = 1 for infinitely many A’ — 0(x). Therefore it is
possible to choose in the sequence {#z}3® an ordinary increasing coun-
table subsequence of points #x left converging to the point x. Consequent-
ly the character of the point  in  is ¢y,. Similarly we can conclude that
the character of the point y(z) in @ is ¢4 (¢1).

Now, let [u;] be a development of a point u € @, @ &= u == b, which is
not a point of any of the three kinds. Then #u — u <— u* where {#u}8" is

4) The ordinal number 0 is not & limit ordinal. Therefore the endpoints @ and b
of @ fail to be points of any of three kinds.
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a sequence containing an increasing uncountable subsequence and {u*}g*
contains a decreasing subsequence of uncountably many points. Evi-
dently a <— {a”}¢* and {#b}&* — b. Therefore we get

Lemma 2. The character of every point in Q of the first (second, third)
kind is cqy (€19, €11)- The character of every other point in Q except the end-
points a and b is ¢,y. There is in Q a decreasing [increasing] sequence of
power ¥, right [left] converging to the end-point a [b].

Definition. Let x >0 be a countable ordinal. Let ¢, ... % ...
(A << «) be a countable sequence of i; = 0 or = 1. All points x € @ with
developments [x;] where x; = i; for 1 << x form a closed interval I C @
with the end-point-developments ¢¢i; ...7;...000 ... and %40y ... % ...

.. 111 .... I will be called the interval of order x and it will be denoted by
Ligiy ... 7 ... (A << «). The whole continuum @ will be called the interval
of order 0.

Lemma 3. Two intervals Iig, ... % ... (A<<e) and Ijy; ... 72
(A < ) of limit orders & and ) have a point in common if and only if one of
the two following conditions is fulfilled:

1° 43 = §, for all A < min(e,n),

2° there exists the least ordinal & << min(e,n) such that v, = j, for
A< 6 and isg + js = 1, whereas iy &= 15 for 6 + 1< A <<e and j; == js
for 6 + 1< A<y

Proof, If the condition 1° is fulfilled the common part of both inter-
vals is an interval. In the second case 2° the point x € @ with two diffe-
rent developments [2;] and [y;] — where xy = y; = 93 for 4 << 6, x5 = 15,
Ys = jo (so that xs + ys = 1), whereas x; x5 and y, +ys for all
A > 0 — is the common point of both intervals.

Now, let us suppose that both intervals have at least one point z in
common. Two cases are possible: either i; = j; for all 2 << min(e, )
and then the condition 1° is fulfilled, or there exists the least ordinal
d < min(e, 57) such that ¢s = js. The common point x must have two
different developments 7gf; ... 75111 ... and jgj; ... 76000 ... in the case
when 45 =0, or ¢y, ... %000 ... and Jol1 .-+ Jsl1l ... in the case when
i = 1. Therefore 145+ js =1 whereas 1,1 :4: is for 0<<A<e and
ia == js for 6 < A <7.

Let x € Q. We say that « has property (a) or (b) or ..., (g) if there
exists a dovelopment [x;] of « and the least ordinal « such that the corres-
ponding property holds:

(a) z; = 1 for an infinite number of indices 1 < «,

(b) x; = 0 for an infinite number of indices 4 < «,

(¢) there exist two ordinary increasing sequences of indices 4, — «,
Un — « such that z;, = 0 and x, 1y = Lo

(d) there exists the least ordinal f such that x; =1 for § < A <
< B + o = «, f being a limit ordinal or 0,
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(¢) there exists the least ordinal f such that a; = 0 for f < 4 <
< B + o = ~,  being a limit ordinal or 0,

(f) there exists the least ordinal y such that a; = 1 for y < 4 <
<y + o = «, y being an isolated ordinal > 0,

(2) there exists the least ordinal y such that x; — 0 for y < 4 <<
<y + w = «, y being an isolated ordinal > 0.

If a point 2 € @ has one of the properties (a), ..., (g), it is easily seen
that « is a limit ordinal. One point can have more than one property, for
example every point with property (d) has also property (a). Every point
x € @ must have at least one of the properties (c), (d), (e), (), (g).

Let [x;] be a development of a point x € @ and let x be the least
ordinal such that some of the properties (a), ..., (g) holds. Then every
point z e @ with the development [z;], z; = x; for A < «, has the same
property with the same least ordinal x. All points like these form an in-
terval Ixgx, ... x; ... (A < x) of order x and we say that this interval has
the property in question.

Now we are going to denote by &, (k =1, 2, ..., 6) the system of
intervals i3, ... 195 ... (A < &) C Q of all (least) orders o such that

&,;: all intervals Iigi, ... %; ... (A < x) have property (a),

&,: all intervals Iy, ... 3, ... (A < x) have property (b),

&,: all intervals Iigi; ... 9 ... (A < ) have property (c),

S, every interval Iigi, ... 15 ... (A < «) has property (c) or (d) but

no interval Iigi;...%;... (A <«') where o’ <<« has either property
(¢) or (d),

S;: every interval Iigiy ... 7 ... (A << o) has property (c) or (e) but
no interval Iy, . A< ) where &’ << « has property (c) or (e),

S, every mterval I Lo’l .. (A < «) has property (c) or (d) or (e)
but no interval I, . (l < «') where o’ << « has any of these three
properties.

Now, let us prove that every system S, (k =1, 2, ..., 6) ts a disjoint
system of closed intervals on . In fact, let hozl 2 (A<<e) and

Ijjy .. 92 ... (A < n) be two different intervals of (limi‘o) orders ¢ andn
belonging to a certain system &;. With respect to the minimality of ¢ and
7 and because ¢ and, 7 are limit orders the condition 1° of lemma 3 could
not be satlsfled but in the case ¢ = #; but then I, .. LA<e) =

= Ijj; - . (A < n) which would be a contradlctlon Therefore the
condition 1° cannot be satisfied at all.

Assume that the condition 2° of lemma 3 is satisfied. Then 4; = j;
for 2 < § where § is a suitable ordinal << min(e, %) and is + js = 1, whe-
reas i, == 45 ior infinitely many A viz. if 6 + 1< A < ¢ and j; = js for
infinitely many 4 viz. if 6 + 1 < l < 7. Therefore & — n 5 + o and
one of the two intervals Tigi, ... ;... (A < &) and Ijgjy ... Ja--- (A<<17)
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has the property (f) and the other has the property (g). Thus we have
proved that both intervals can only belong to the system &, or &,. As
i; = j2 tor A << 6 and with respect to the minimality of orders ¢ and 7,
it is either Iigiy ... 03 ... (A << &) € &; and then j; = 1 for a finite number
of 2 << 9 so that Iy ... j2...(A<<n)none &, or it is Ligiy...05... (A< ¢)e
€ &, and then j; = 0 for a finite number of 2 << 9 so that Iy, ... 5 ...
(A<<m)none &,. Therefore the possibilities £ =1 or k=2 cannot occur.

From this it follows that none of the conditions 1° and 2° of lemma 3
can be satisfied. By the lemma quoted both intervals Iig, ...7;...

(A< ¢e)and Ijyfy --- 7a --- (A <<7) have no point in common.
Let us denote by Sl)k k=1, 2, ..., 6) the system whose elements are
closed intervals y = ligt; ... 0; ... (ﬂ. <«x)e; and one-point-sets

(@) C Q@ — U, where US;, denotes the set of all points e @ belonging
to one interval I € &, at least. By the development of an interval-point
y = I, .. (/1 < «) we shall mean any development [z;] of any
point tehozl . (A< ) C Q. We shall use the symbol If; ;. .
(A <) to denote the set of all elements z € Py, (interval-points and com-
mon points) with developments [z;] where z; = j; for 1 << .

We shall denote by A" CProo=01k=1,2,..,6, the set of
all points z € Pz with the chamcter Coo iN Pr-

Theorem 2. The system Py (k = 1,2, ..., 6) is an ordered continuum.
None of its intervals contains any countable dense subset. There exists the
following disjoint partition of V;:

S131:430 UA%I u gt
Py = 020 UA% U g2
Py = A3, U A3 U A3 U A U B
P, = A& U Ay A}, U Bt
P, = Agu U Afo U Afl U Kb
P, = A8 A8, U ES

into non-void subsets which are dense in W, except the two-point set BF
containing both end-poinis of Py

Proof. 1. The system ¥, (k = 1,2, ..., 6) is a disjoint system of one-
point-sets and, closed intervals on the continuum ¢ containing more than
one element such that Y%, = @. According to Theorem 1 the system Y,
is an ordered continuum.

II. Let I = Iigiy ... % ... (A <) C @ be an interval with property
(¢) or (d) or (e) containing no end-point a, b. Then the left end-point z of 1
is a point of the first kind with 0(z) =« or 0(z) = f = x — ® and the
right end-point y of I is a point of the second kind with 1(y) = « or 1(y) =
= f§ = o — w. According to lemma 2 the character of I in @ is c,. In the
analogous way, using the same lemmas, it is easy to show that the cha-
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racter of every interval I with property (f) in @ is ¢,, and that the cha-
racter of every interval I with propertv (g) in @ is c,,.

If there is an interval-point in Y, with property (c) or (d) or (e) then,
evidently, there exists no common point in Y, with the same property.
Since in each system &, (k = 1, 2, ..., 6) there are intervals with property
(c), there are interval-points with property (c) in each continuum %, so
that no common point (z) of P, has the property (c). Therefore 0(z) or
1(x) exists for every common point (z) € P, and z € @ is a point of the
first or second or third kind in @ with character ¢y, or ¢;¢ Or ¢;; or it is an
end-point in Q.

IIT. Let p << q be any two different points of ¥, (k£ =1, 3, 4, 6)
with developments [p;] and [q;] such that p; = q; for 4 << 8 whereas
ps = 0 << qs = 1. If p(q) is an interval-point in Yy, let [p,1([ga]) be the
development of the right (left) end-point of the interval p C Q(g C Q).
As p = q there is the least ordinal y > d such that either p, = 0 or ¢, =
= 1. Therefore there is an interval J = 1I},...1;... (A<<y +3)CQ
such that p < J < q. In fact, let us put in the first case (p, = 0):e; = p,
for A<y ande,=e,.2 =1, ¢, = 0 and in the second case (g, = 1):
e=qfor A<y, e, =¢€,.1=0,¢.,=1

Let us consider three intervals in Q:

U=1Tugu, ... u5... A<y +w), V=1Ivw,...05... A<y + w2)
W =Tww, ... w; ... (A<y + )

where u; = v; = w; = ¢; for A <y + 3 whereas

u; = 0 for even A and u; = 1 for odd A such that y +3 < A <y + o,
v =0fory+3<A<y+dwandvy,=1lfory +0ol i<y + w2
wp=1lfory +3< 1<y 4+ w.

Then we have p < U < ¢, p<V <qand p< W <gq.

IV. From property (a) it follows that a point z e P, is a common
point in P, if and only if each of its developments [x;] contains at the
most a finite number of x; = 1. There is only one point = € ¥, like this
viz. the point = (a) where a € @ is the first point with the development
000... All other points in P, are the interval-points. It is easy to see that
every interval-point in Y; has one and only one of the properties: (c),
(@), (9).

Now, let us choose any two points p < ¢ in P, with developments
defined in section I1I. With respect to property (a) we have either p, = 0
for the least ordinaly > d andy << 6 + w or g, = 1 for the least ordinal
y > 0; therefore, because p == ¢, we get in both cases ¢; = 1 only for
a finite number of A <<y + 3. Consequently U,V and W are interval-
points in P, from which the first has property (c), the second (d) and the
third has property (f). According to section II and to lemma 1 the first
two elements have character ¢y, and the last one has character ¢y in P;-
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Therefore A}, and 4§, are dense subsets in P, and the following disjoint
partition holds ¥, = Ag, U 4}, U E1, where the set E' consists of the
two end-elements of P);.

V. The interval Ity ... 73 ... (A <) C Q is an interval-point in pIN
if and only if it has property (c). Let the points p and q of P, be the same
as in section III. As p < q there is the least ordinal y > § such that
either p, = 0 or g, = 1. Every interval Tege, ... ¢; ... (A < x') C @ where
a' <y -+ 3 fails to have property (c). For x” < § it is evident, because
otherwise p = ¢, and fora’ > d it follows from the property of the ordinal
. Thus the interval U is an interval-point in 3 whose character — accor-
ding to section IT and to lemma 1 — is ¢yg. The left (right) end-point v of
the interval V C @ corresponds to a common point (v) € Py; v is a point of
the first (second) kind in @ with 0(v) =y -+ @2 (L(v) =y + ») whose
character in @ — by lemma 2 — is ¢ (¢10). According to lemma 1 the
point (v) has the same character in 3. The right end-point w e ¢ of the
interval W C @ corresponds to a common point (w) € Py; it is alsoa point
of the third kind in @ with O(w) = 1(w) = y + 2 and with character ¢,;
in Q and with the same character in P;. Therefore P; = A3 U 43, U
U A3, U 43, U B3 where A3  are non-void disjoint subsets which are
dense in P, and B3 is a set containing only the two end-elements of Ps.

VI. There are two possible kinds of interval-points in 9, with pro-
perty (c¢) or (d). They have — as stated in section IT — the same character
Coo €xcept the last interval-point b* = I111 ... (A < w) of ¥),. Further
there are two possible kinds of common points in ¥, with property (e)
or (f) and (g) (at the same time). They can have only characters ¢g, or ¢;1-
Consequently there is no element in ), with character c,.

Let p < g be any two points of 9, mentioned in section III. Then no
interval Tepe,; ...e; ... (A <«&') C @, where &’ <y + 3, can have any of
the properties (¢) and (d). As p == ¢ this is clear for o’ < §. For § << a' <
<y + 3 the assertion follows from the fact that either es = O and ¢; = 1
foro+ 1< A< yores=1lande; =0ford + 1< A< y.

From this it may be deduced that U and V are interval-points of P,
with properties (c) and (d). The left (right) end-point w € @ of the interval
W C @ corresponds to a common point (w) € P, with property (e) ((f) and
(g)). Here we have 0(w) =y + o (0(w) = 1(w) =y + 2). The character
of the point (w) in P, is ¢y, (¢y;). Consequently A% = 0 and A}, 43, A%,
are dense subsets in Y,.

VII. In 9, there may exist three kinds of interval-points with pro-
perties (c¢) or (d) or (e) which all — except the first interval-point a* ¢ P
and the last interval-point b* € P, — have the same character ¢y and may
be only one kind of common points with property (f) and (g) at the same
time whose character is ¢,;. There are no elements in 9, with character ¢y,
or ¢yq.



Let p <Z g be any two ditferent points of ¥g. Using the same argu-
mentation as in the previous section VI we can prove that there is no
interval Iege, ... e ... (A <<«&') C Q wherea” <2y + 3 having any of the
three properties (c), (d) (e) so that U and V are interval-points and the
right end-point of the interval W C @ corresponds to a common point
in Pg. Therefore Py = A5 U A% U ES where 45, and A% arc (].IS_]\)lllt
dense subsets in Pg and K8 is a set of the two end-clements of Y.

VIII. Let us attach to every common point 2 € P, with the develop-
ment [a;] the point p(x) € @ with the development [1 — ;] and to every
mtmval point y == ligi; ... 4 ... (A< x) e P, the interval p(y) = Ljy7, ..

.(A<x)CcQ Wheu, ];, =1 — i, for 2 < «x. Then (p(x)) is a com-
mon ])oint in Py, ¢(y) is an interval-point in P, and ¢ is a mapping of P,
onto P,. The relation z; << z, between any two elements of §; implies the
relation @(z;) > @(z,) in P, so0 that P, is similar to P where * is used to
denote the reverse order. In a similar way it is easy to prove that Y is
similar to ;.

To complete the proof it remains to show that in no interval of U,
(k=1,2,...,6) there is any dense countable subset. This follows {rom
the tact that there are elements of Y, with character ¢y, or ¢, or ¢,y inside
every interval (p, g) of P, so that there is an uncountable disjoint system
of intervals in (p, q).

Remark. The end-points of the ordered continua Y, (k = 1, 2, ..., 6)
are of 4 kinds namely (a), a* = 1000 ... (1 << ), (b) and b* = I111...
(A < w). Fronl the properties (a) — (g) it follows that E! = {(a), b*},
B? = {a*, (b)}, E3={(a), (D)}, E*={(a),b*}, E°>={a* (b)}, ES—=
= {a*, b*}.

Theorem 3. The cardinal number of every ordered continuwuwm <,
(k=1,2,...,6) is 2%. The cardinal number of Ak, is 2% and the cardinal
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number of AY,, A% and A%, — provided these sets are non-void — is §,.
Proof.8) Because the cardinal number of the system of intervals of
all countable orders x << w, is 2%x, = 2%, the power of the system &, is

5) The ordered continuum with analogous properties mentioned in Theorems
2 and 3 for k = 3 is known under the name wultracontinuum. F. Bernstein defined in
his article ,,Untersuchungen aus der Mengenlehre'*, Math. Ann. 61 (1905), p. 146 the
point-set X, in this manner: the elements of X, are the ordinary infinite sequences
& = Xy ... Xy ... Of ordinals o, of the first and second ordinal class 0 < x,, < ;.
The order of X, is introduced by the following order-rule: c;xy ... xp ... < f1f35...
.. fn ... if there exists an index k such that x; = f§; fori = 1, 2, ..., k— 1 whereas
o < Prif kis an odd integer or oy, > ;. if k is an even integer. The point-set X, isno
continuum, there are gaps in it. But after filling up the gaps we get an ordered con-
tinuum of power 2% in which there are elements with characters ¢, ¢o1, €59 and Cyse
Cf. my article Zwei Bemerkungen zum Bernsteinschen Ultrakontinuum, Cas. pro pést.
mat. a fys. 68 (1939), p. 147. Probably, Bernstein’s ultracontinaum is similar to the
continuum .
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< 2%, On the other hand, every system &, contains intervals with pro-
perty (c), especially all intervals Iigi, ... 4; ... (1 < w) C @ with infinitely
many ¢ = 0 and infinitely many 7,y = 1 for A < w and 1’ < w. From
this it follows that the power of the system &, (k =1, 2, ..., 6) is 2%.
Because every set Ak consists of interval-points and because every

interval-point with property (c) belongs to the set A%, the cardinal num-

ber of Ak, is also 2% for every k = 1,2, ..., 6.
Let ze 9, — 4%, k= 1,2,...,6, be a common point with the de-

velopment [z;] or an interval-point z = Izyz; ... 2;... (A <«). Let z be
not the last point in ;. Then it is possible to attach to z a sequence of
ordinals
g < o< oxy <y < ... <o, < f,<...
O<a,<pp<wor 0w, <f,<x)

such that z; = 0 for and only for those 4 which satisty the inequality
Oévé A< B, where v = 0,1, .... Because there are neither common
points in P, — AE, with property (c) nor interval-points with property
(c) the sequence &y << fo < ... must be finite. The cardinal number of all
sequences like these is &,. Evidently, the corresponding sequences of two
different elements of P, — A% are different. Therefore the cardinal
number of the set ¥, — 4%, cannot exceed the cardinal number ;. On
the other hand there are elements £, € A% (k =1, 3, 4) with correspon-
ding finite sequences ¢, =0<fo=wp<olp+1)=0,<f = o,
where 0 << u < w, the cardinal number of which is &,. The same holds
true for elements ¢, e A% (k= 2,3,5) with corresponding sequences
ag=op < o(p+ 1) = (0< u < w,) and for elements ¢,eAd¥, (k=
= 3,4,5,6) with corresponding sequences x, =0<fy=1<wx; =
=u<p+1=48 (2<u<w,). Thus, with respect to Theorem 2, the
proof is complete.

An ordered point-set 7' will be said to be quasi-homogeneous if in
every interval on 7 there is a subinterval which is similar to 7'.

Theorem 4. Every continuum P, (k=1,2,...,6) is quasi-homo-
geneous.

Proof. Let J be any closed interval on ¥, (k = 1, 3, 4, 6) with end-
points p < ¢ and let ITege, ...e;... (A<<y + 3) C @ be an interval of
order y + 3 defined in section III on the page 000. Then I* = I*eg, ...

cez...(A<y 4+ w)wheree; = 0fory + 3 < A <<y + wis an interval
in Y, (k=1,3,4,86) such that p < I* <gq in ¥,. Now, we shall dis-
tinguish two cases:

The first case: k = 1, 3, 4. The interval I* fails to have property (a)
(for & = 1) or (c) (for k = 3, 4) or (d) (for k = 4). Consequently, if 2 =
= Ligiy ... 4 ... (1 <«) is any interval-point in %, then f(z) = Ijj; ...

e dae A<y +w+o¢)wherej,1:e1forl<y—{—wandh =iy toyia
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fory o < 1<y + o + visalso an interval-point in P, and f(z) e I'*.
If 2 € Py is a common point with development [2z;] then the point f(z) = 2’
with development [z;] where zy =¢e, for <<y 4+ o and otherwise
Z) = % (yrw)i2 fOr Ay 4 @ is a common point in ¥, and f(z)e I*.
Now, if t = Itgt, ... 1, ... (A<<Pp), B >y + w, is an interval-point in [*
or if [#] is a development of any common point ¢ € I* then f(z) = ¢ where
=TIz ...2 ...€ V., 213 = byiwys 18 an interval-point in P, or [z],
23 = ty1 4y, 18 @ development of a common point z € P;. Evidently, the
inequality z, << z, implies f(z,) << f(2,) so that 2’ = f(z)is aone-to-one order-
preserving correspondence between 9, and I* C J.

The second case: k= 6. Let p’ = Ipyp; ... py--- (A<y + ©3)
and ¢' = Iqgqy ... qy .- (A<y + ®2) be two interval-points in Pg
where p) = ¢qy = ¢, for A<y + o and py =0, ¢ =1 for y+o<l
<i<y+4w2 and py=1 for yp+w2<i<y+w3. Then
p<p < q <q Forz=a*ePs we put f(a*) = p'. For z & a*, 2z =
= Ligl; ... 0 ... (A<o)ePg weput f(z) = Ljgja...J0n--- A<y 4o+
+ «) where j, = p; for A<y 4+ w and j3 = i_(yrw)+2 for y + o0 <
< A<y 4 w + «. Then f(z) is an interval-point in P, belonging to the
interval (p’, ¢'>. If z € P; is a common point with the development [z;],
then [z} ], where z; = p; for 0 < 2 <y + o and otherwise 2y = 2_(, 1.0)+4
for A > y + w, is the development of a common point in P belonging to
the interval (p’, ¢">. In the same manner as in the first case we can easily
prove that f(z) is a one-to-one order-preserving transformation of P
onto (p’, ¢'>. Therefore Y is similar to the interval {p’, ¢'"> C J.

For k = 2,5 Theorem 4 follows from the fact that Y, is similar to
Py and P, is similar to Py.

~

Theorem 5. There exists a subset P, of Vs which is similar to Py,
k=1,2,...,6).

Proof. Let us attach to every element z € Y, an element 2" € P; in the
following manner: If z is an interval-point z = Igt; ... 433 ... (A < &) in Py
with property (c), then 2" = I'igt; ... %1 ... (A < «) is an interval-pointin
Py If 2= Tigiy... 4 ... (A <<«x)e P, has not property (c) then let 2’
denote a point in P, with the development [z;] where z; = i, for 1 <«
and z; = 0 for « < A < w;. If z is a common point in P with develop-
ment [z;] then it fails to have property (c) so that the corresponding point
#' with development [2;], z 3= 2, for A < w, is a common pointin P,.Itis
easy to see that all elements 2z’ form a subset P, C P; which is similar
to Py.

Let & be a disjoint system of intervals on P (k =1,2,...,6) of
whatever kind satisfying only the condition that for every point z e P
with character ¢,; (¢16); 0, ¢ = 0, 1 and for both end-points of %, there
exists an interval S € & such that z is an inner point or a left (right) end-
point of S (which may or may not belong to S). We say, that the system &
possesses property m*.
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Lemma 4. Let & be a system of intervals on Pz possessing property .
Let [x;] be the development of a common point (v) € V. Then there exists an
interval S € @ and an interval I*xyx, .. LA<a)—(v)CS.

Proof. Since (x) is a common point in 5))3 it is * € @ and there exists

1(x) or O(x) Therefore {#x}¢1, — v or x <— {a#}¢, in @) where {#x}¢1, is an

increasing and {x#}&1, a decredsmg uncountable sequence. From the pro-

perty z* it follows the existence of S e & and of an ordinal p’ > 1(x) or

> 0(x) such that (*z)e S or (#*)e S and that ((*'z), (z)) C S or ((x),

(&) C S, (*z) and (2*') being common points in P,. Therefore I*zy, ...

(A< +1)— (x) C S, one of the developments of #'z being

[t;] where t; = a; for A << p’ + 1 whereas ¢; = 0 for A > u’ 4 1 or ana-
logously #; = a3 for A < pu’ + 1 whereas ¢; = 1 for 1 > u’ + 1

Theorem 6. Every disjoint system S of intervals on Y, possessing pro-
perty T* is countable.

Proof. To prove this theorem we shall make use ot the following
statement$):

Let Z be anon-void abstract set. Let the following rule for the construction
of subsets N, C Z be prescribed: If all countable subsets N, S,, 4, of Z are
constructed for all v <<y where Ny = Sy = 0 = Ay and S, == 0 for v > 0,
we put N, = U4, — US, and choose S,, % 0, S, C N, supposing N, 40

<y ry
and then choose the countable set A,, C Z — U4A,. Then there exists a coun-
vy
table ordinal number & > 0 with the property Ny = 0 thatws Y4, = US,.

v <9

Let Z denote the set of all developments of common points in P,.
Since there are at most two developments of a common point in P, the
cardinality of Z — according to Theorem 3 — is ¥,. Let Ny = 0. Let us
choose an infinite countable subset 4, = N, C Z of all developments
[%;] of common points (z) e P, with 0(z) < 7, or 1(z) < 7, 7, being a
countable limit ordinal. Let us choose a development [s}] € N; of a com-
mon point (s!) € P;. According to Lemma 4 there is an interval S ¢ & and
an interval I*syst ... sy ... (A <oay) — (s*) C S*. Let 7, be a limit ordinal
> 75 and >«,. Let 4, C Z — 4, be a countable subset of all develop-
ments [2;] of common points (z) € ‘})3 with 7, < 0(z) < 7, 0or 7, < 1(2) <
< 7,. Denote N, = Ay U A4, — [s}] choose a development [s3]e N, of
a common pomt (s?) € 5})3 and go on. After having constructed — for all
v <y — countable subsets NV, and chosen disjoint subsets A4, C Z of
developments [x;] of common points (z) e P, with 0(z) < 7, or 1(z) < 7,
such that 7y << 7, < ... < 7, < ... and after having chosen develop-
ments [s}] € NV, of common points (s*) € P and intervals S* € @ such that
I*s;;s” .8y o (A< &y) — (8*) C S where o, << 7, for all ¥ <<y, we put

6) See J. Novdk: A paradoxical theorem, Fund. Math. 37 (1950), p. 77—S83.
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N, = U4, — UIs§] and choose a development [s{]e N, of a common
r<y ry

point (s¥) € P, supposing N,, == 0. According to Lemma 4 there is an in-

terval §7 ¢ @ and an 1ntcrval I*sysy o8y (A <av,)) — (s7) C S7. We

choose a limit ordinal 7, > «, such that T < 7, < w, for allv <y and

then we denote by 4, C 7 — UA the set of all developments [x;] of com-

mon points (x) € P3 with r,, < Ox) < 7, or 7, < l(x) < 7, for all
v << y. According to the statement quoted there exists a countable ordinal
& such that U4, = U[s}].

<9 <9
Let © denote the least ordinal which is > 7, for ally << ¢. Then both

U4, and U[s}] are the same set viz. the set of all developments [2;] of
<9 <&

common points (z) e P, with 0(z) < O or 1(z) < 6.

Let S be any element of &. According to Theorem 2 there is a com-
mon point (z) € V,, inside S, with development [x;] and with character ¢,
so that 1(x) does exist. If 1(z) << @, then there is a development [s}] € N,
of a point (s)” € P such that x; = s% for all 1 < w,. Consequently I*s¥sy. ..

(A< «a,) — (8") C 8. As the point (x) = (s”) is an inner point
of § we see that (I*sjsy...s%... (A<«&,)— (s) NS ==0; therefore
S = 8, & being a disjoint system of intervals. If 1(z) = O, then there is
the least ordinal # << @ such that x; = 0 for § < 2 << O (or 23 = 1 for
B < A< 0), because the point () has not property (c¢). From this it
follows the existence of an ordinal » <<+ and a development [s{]e N,
such that s§ = x; for 4 << f and s} = 0 for A > f§ (or s} = 1 for 1 > f).
Thus s¥ = a; for all 1 << @ and, since x, << O, we get (x) e ([*shsy ...

. (A < x,)) n 8. We conclude again that S = S*.

Because the set of all ordinals y << 9 is countable, the system & must
be countable too.

The ordered continuum C will be said to possess property 7 if every
disjoint uncountable system of intervals on C contains an uncountable
subsystem of intervals whose left end-points form an increasing or a de-
creasing sequence of points in C.

By means of Theorem 6 we can prove

Theorem 7. Every continuum Y, (k=1,2,...,6) possesses pro-
perty .

Proof. Suppose that P, does not possess property 7. Let & be a dis-
joint uncountable system of intervals on Y. Let T be a system of all
intervals J C Y5 such that 1. J n (US) = 0, 2. if J' C P; is an interval
then J' D J and J' n (US) = 0 implies that J = J'. From properties 1
and 2 it follows that the system & U € is a disjoint system of intervals
in P,.

Now, let z € P; be a point with character cy; o = 0, 1, or z = a*
(¢16; 0 = 0, 1, or z = b*) which is not an interior point of any interval of
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S U T or a left (right) end-point of any interval of &. Then from our
supposition it follows that there is a point y € Vg, ¥ > 2, (¥ << z) such that
(z,y)n (US) =0 ((y,2) n (US) = 0). Therefore we can conclude —
by 2 — that z is a left (right) end-point of an interval J € ¥ (which may or
may not belong to J). Therefore the system & U & has property z* and
according to Theorem 6 it is countable. This contradicts to the fact that &
is an uncountable system.

Thus we have proved Theorem 7 for k = 3. Now, let k = 1,2, ..., 6.
According to Theorem 5 there is a subset f(V;) = P, C P, where f
denotes the similarity function. To any interval (p, q) € P, there corres-
ponds an interval (f(p), f(q)) € ;. Hence because Y5 possesses property z
it is easily seen that ¥, possesses property 7 as well.

We say that the ordered continuum C possesses the Souslin property
if there is no uncoutable disjoint system of intervals in C.

Theorem 8. Let C be an ordered continuwm possessing the Souslin pro-
perty. Then C contains a countable subset which is dense in C' if and only
if Cis similar to an ordered subset R C P, (k = 1,2, ..., 6).

Proof. Every ordered continuum contains a subset which is similar
to the interval <0, 1 of real numbers. Thus the necessity of the condition
is evident.

To prove the sufficiency we can assume — with respect to the
theorem 5 — that C is similar to a subset R C ¥;. The complementary set
P; — R consists of intervals which form a disjoint system & of intervals
on P, possessing property z*. Indeed, if the character of a point ze P;
is ¢y1 (¢16); 0,0 = 0,1, or if z = (a) (z = (b)), then z is not a left (right)
limit of any uncoutable decreasing (increasing) sequence of points of R
the continuum C having the Souslin property. From this we conclude
that the point z is either an inner point or a left (right) end-point ot an
interval S € &. According to Theorem 6 the system & is countable.

Let us denote by R’ the set of end-points of all intervals Se &
belonging to the set B. The set R’ is countable. Let S be any interval of &
and let a; << @, be its end-points. Then either a, € R or a, ¢ R. Otherwise
there would be a gap (4, B) in R where 4 denotes the set of all points «
of R such that < a; and B the set of all points « € E such that x > a,.
Therefore either a;, e R’ or a,e R'.

Let b, < b, be any two points of R. Then there exists an interval
S € & with the end-points a; < a, such that b, < a; < a, < b,. As we
have just shown one of the end-points a,, a, belongs to the set R’ so that
R’ is a dense subset of E. Consequently the continuum C contains a coun-
table dense subset.

III.

Let P be an ordered. continuum. For x € P let P, denote an ordered
continuum or a set containing only one point. Then we obtain a new non-
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void ordered set by lexicographically ordering the set P of points (x,y)
where 2 € P and y € P,.

Let P be an ordered continuum and let P’ C P be a subset in it. Put
P, = P for xe P' and P, = () for x € P — P’. Then we get a special
ordered set P which will be denoted by P = [P; P’].

We shall prove

Lemma 5. Let P be an ordered continuum. Then P is an ordered con-
tinuum as well.

Proof. Let (A, B) be a section of P. Let A C P be a subset of all points
2 € P such that (z, y) € A for at least one y € P,. Put B = P — 4. Then
(4, B) is a section of P. As P is an ordered continuum there is a point
2y € P which is determined by the section (4, B). Let A" denote the set of
all points y € P,, such that (v, ¥) € Aand let B’ denote the set of all points
y € P,, such that (2, ¥) e B. Then A’U B’ = P, and 2’ e A’, y’ ¢ B’ im-
plies 2’ << ¥’ so that (4, B’) is a section of P, by which a point ¥, € P,,
is determined. Evidently (z,, ¥,) is either the last element in A whereas B
does not contain the first element cr A fails to contain the last element
and B contains the first element (z, y,).

Let P, C Py (k= 1,2, ..., 6) be a subset of P, of power X, which
does not contain any uncountable decreasing or increasing sequence of
points.?) According to lemma 5 the set [Y,; ;] is an ordered continuum.
Its power is 8, . 2% = 2% and the least power of the subset whichisdense
in [P, P,]is evidently &,. All points (2, ¥) € [V P;] vhere z, is a point
in P, and y e P, form an interval I,. The system of all intervals I,
xy € Py, is disjoint and uncountable. From our supposition it follows that
there is no uncountable, decreasing or increasing sequence of left end-
points of intervals belonging to this system. Therefore the continuum
[9;; P;] has not property & and according to Theorem € it is not similar
toany P, (k=1,2,...,6).

Thus we got new types of ordered continua [¥),; P;] of power 2%
such that the least power of its dense subset is §;.

Now, we are going to use the symbol P(cqg, ¢y, --.) to denote the orde-
red continuum of power 2% containing a dense subset of the least power
¥, and containing points with characters ¢y, ¢y, - .. s given in the paren-
theses. There may exist at most 15 kinds of continua like these viz.

P(eg;) Plego) Plegy) PlegiCrs) Plerin) PleoiCro)s
P(cooCo1) P(CooCro) AlCooCo1C01611) P(CooCo1€11) P(CooC10611) L(CooCra)s
P(cooCort10) P(CooC10611) P(Coo)-
We shall show that the continua in the first row do not exist at all. In

7) The existence of subsets like these follows from Theorem 8 where C denotes
the interval (0, 1}.
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fact, every countable decreasing and every countable increasing infinite
sequence of points in an ordered continuum contains an infinite sub-
sequence which converges to a limit. Therefore in every ordered continu-
um there is at least one point with character c,, and at least one point
with character c¢y,. Further, according to F. HaAuSDORFF8) there are
points with symetrical character c,, in every ordered continuum. From
these reasons the continua in the first row cannot exist.

On the other hand theorems 2 and 3 secure the existence of ordered
continua in the second row.

The continuum P(cgCq¢1o) exists. Let us consider, for example, the
set T' = P; U P, which will be ordered like this: x precedes y if v € Py,
yePyorifxe Vi, ye Pi (1 = 1, 2) and x < y. After having identified the
last element of P, with the first element of P, we get an ordered conti-
nuum P(CgoCo;¢10)-This continuum fails to be quasi-homogeneous. I did not
succeed in constructing a quasi-homogeneous ordered continuum %, =
= A%, U A%, U A7, U E7 by means of the properties (a) — (g).

The continuum P(cy,) exists as well. For instance the continuum
P — [0, 1); D], the set D being a subset of the interval {0, 1y of power
¥,. This continuum fails to possess the property . Up to this day it is
completely unknown whether there exists a continuum P(cy,) with pro-
perty . The question of the existence of such an ordered continuum is
equivalent to the well known problem of Souslin. With respect to
Theorem 8 we can only assert that such a continuum, if it exists, is similar
to no subset R C P, forany k=1, 2, ..., 6.

As to the ordered continuum P(cy;€49¢11), I do not know whether it
exists. It could exist only under the assumption that 2% = ¥,.

§8) F. Hausdorff, 1. c., p. 142.
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