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ON COUNTABLE GENERALISED o-ALGEBRAS!), WITH
A NEW PROOF OF GODEL’S COMPLETENESS THEOREM?).

LADISLAV RIEGER, Praha.
(Received July 21st, 1950.)

We give a generalisation of the notion of a countably additive Boolean
algebra (alias ¢-algebra) in the following sense:

The countably infinite joins and meets can be performed on members
of certain s. c. marked (multiple) sequences; these marked sequences
form a family defined by the conditions (1) to (6).

In the case of a countable generalised o-algebra with a countable
family of marked sequences, using a theorem of LooMIs we give an
isomorphical representation of the algebra in a countably additive
field of sets.

Because the LINDENBAUM algebra of the lower predicate calculus
furnishes a typical example of the mentioned generalised ¢-algebra,
we immediately get (by the set-representation) a new proof of the
known fundamental GODEL theorem (stating the completeness of
the lower predicate calculus) as based on Loomis’ theorem.

INTRODUCTION

Let B be an algebra. Let @ be a family of multiple sequences of
elements of B. (We shall write {a,, ,,, ., nk}z,nz, s =1
{bmx,mg, ceos ml};ﬁ., Moy oymy=1> -+ € )

We say that @ is a family of marked sequences in B if the follow-
ing is true:
(1) (The rule of complement).

If {an,, - nk};ﬁ, vty =1€ @ then {a;l, es nk}gf, wony=1 €D (’ always de-
notes the complement in the algebra.)

1) For basic notions of Boolean algebras (in the sequel, the attribute Boolean
will be omitted) see e. g. G. BIRKHOFF [1] (The numbers in brackets refer to
the list at the end of the paper).

2) The subject of this paper has been exposed by the author (within a series
of communications on the algebra of lower predicate calculus) at the seminarium
of prof. MosTOWSKI in Warsaw, during April 1950.— I take the opportunity to
express my gratitude to prof. MosTowskI for many stimulative and helpful
criticisms. Another part of the mentioned communications will appear in Funda-
menta Mathematicae 1951. An elaborated algebraic theory of the predicate
calculus (of mathematical logic) with applications is planned as a monograph.
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(2) (The rule of joins and meets.)

a‘) If {anl, e nk};zf:, =1 € ¢: {bm,,‘..,ml}rfl,...,ml=1 € D then

3 _ oo
{an,, ..., nkU bm,. B L N e {67"“"7k+l}’1’"""k—H:1 ed.

b) The same shall hold with M instead of U. (Notice that two sequences
are equal if and only if the corresponding members are equal.)
(3) (The rule of identification of choosen indices (forming ‘“diagonal’
sequences)).

If {an, . ntm.on—1€@and if 1 < i) <ip,<...<i, < k are
chosen integers, then putting n =n, =n;, = ... = n;, =1, 2, ...
we get a further sequence

}oo —
n, Ny,

a, =
{ (TR SN n oy=1

G T My My ey

Ja— @D
- {bm,, ...,mk_s+1}m1, oMy oy =1 €.
(4) (The rule of fixation of indices (forming “cylindric’’ sequences)).
If {an,, ., npm s my=1 € D, it 1 < 4y < iy < ... < 4, < k are chosen
integers and if n,, ng, ..., n,; are preassigned positive integers, then
the sequence

{an,...a, )

ARICX L L
= {67117'2,...,?‘,0_3}???,7‘,,...,Tk_s=1 € d)
also belongs to @.
(5) (The rule of trivial sequences)
If @, ny.sn, =aeB for any ng, ny, ..., n,=1,2, ..., then

{an,, ...,nk}rﬁ,...,nk=l €d.
(6) (The rule of L. U. B. and G. L. B.)

To each {a,, n,, -‘-’"k}?‘?- wyn—1 €D there exists in Bthe L.U.B.,i.e.the
(at most) countable join, and the G. L. B., i. e. the (at most) countable
meet (in the sense of the lattice ordering, of course) of the members
Unyy ..y, of the sequence in question.?)

Whenb and ¢ are the mentioned L. U. B. and the G. L. B. respectively,
then we write

@0
UU.- U, =b
e} o<}

0
n n-- n Py, eiymy, = €

=1 ne=1 nk=1

3) It is to be noticed that since the arranging of the members in a marked
sequence is irrelevant for their L. U. B. and G. L. B. we simply could speak about
certain ‘‘marked’’ at most countable subsets of the algebra. But formally, this
conception would bring, in fact, more complications than simplifications — not
speaking about the suitability of the application to logic.
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or more shortly

o

[=e]
U Uny,ooymyy = b, n @y, .coymy, = C-

Ny eees =1 Ny eees Np=1
(7) (The rule of partial L. U. B. and G. L. B.)
a) Let {ay,, .. n }n,...,n,=1 PO a k-tuple sequence belonging to @. Let j
with 1 < j < k be a fixed integer.
Then the joins

@

U An,, ..., Mj s M Mgy ey Ny = bm,...,nj_l, Njopr e By,

nj=1
performed (by (6)) after any fixation (by (4)) of the £—1 indices n, ...,
oo Mj_q, Myjg1s -+ My, are mambers of a k—1 tuple sequence

{bn,, ...,nj_ 1 nj+1, cery 17,,(};2, '"’n.’i‘l' n]-+1, ""nk=1
belonging also to @.
b) The same shall hold with N instead of U.

We say that the algebra B then becomes a generalised o-algebra with
respect to the family @ of marked sequences; more shortly, B is a @o-algebra.

The concept of a @g-algebra can obviously be taken for a generali-
sation of the concept of g-algebras (i.e. countably additive algebras)
where @ is the family of all multiple sequences. In the trivial case
(of any algebra), @ contains trivial marked sequences (sub (5)) only.
In order to present a less trivial example, consider the o-field of Borel
subsets of any topological space. Let @ be the family of multiple se-
quences of Borel subsets, formed by completing the set of all multiple
sequences of open subsets as to fulfil the above rules (1) to (6). Then the
algebra of Borel subsets Gsso ... and Fgs, ... with a finite combination
of the suffixes o, 0 is a Po-algebra though not a g-algebra. (If the space
in question is perfectly normal, i. e. each closed subset is a G4, then the
Do-algebra in question consists of G q, . 5 Subsets).

A natural question is whether a @¢-algebra can be isomorphically
represented by a field of sets, i. e. immerged in a suitable o-field of
subsets of a set. Of course, this is not possible in general because it is
well known that the g-algebra of Lebesgue measurable subsets of the
interval (0,1) taken modulo subsets of measure zero cannot be isomor-
phically represented by a o-field of sets.

In the present note, we shall answer the above question in the
positive for any countable @o-algebra with a countable family @ of
fundamental sequences. This quite special case is considered for the
purpose of mathematical logic. Since the so called LinDENBAUM algebra
of the lower predicate calculus furnishes a typical example of such
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a Do-algebra, we almost immediately get a new (algebraical) proof of the
well known completeness theorem for lower predicate calculus, due to
GopEL [2].

Notions and symbols.

In the sequel, we take the joins U Uy oy and the meets

Ny ees My =1
. ”Qxl Uny ..ymy, With {an,, nk};‘,‘j, =1 € QZ]; for the only “algebraically”
definécd infinite operations of the @Po-algebra in question. (If nothing
other is said, then any multiple sequence (as {a,, .., ”k}:‘?’ ny=1>
{bm,, -~-’mz}$h--"mz=1"”) belongs to the considered family @ of marked
sequences.) +, 2 always denote set sums, . , [T set products (inter-
sections), ¢ the void set, 0 the unit and 1 the zero (of an algebra).

We need an appropriate generalisation of the known basic notions
of o-homo(iso)morphic mapping, of a ¢-(prime)ideal and of the corres-
ponding quotient algebra.

We define:

A mapping ¢ of a @g-algebra 4 in a Wo-algebra B is o-homomorphic
(in the generalised sense, this phrase often being omitted)

it {p(an,,...,n, }n., n, =1 € ¥ whenever {anb P e —1e® — and if
p(a) = (p(@))’, U ‘P(a’n,,...,nk U Ay, .. ,nk)’ n lay,,.. “ny, )=
Ny, sy =1 n,, ,nk—l 15+ ,nkf
=<}
=¢( M “nx,...,nk)-_ @is called a proper o-homomorphic mapping of A
nl,...,nk=1

onto B if ¢ is a o-homomorphic mapping of 4 onto the whole B and,
moreover, if to any {b,, . . m };‘rz,...,mfl e @ there exists a suitable
{amx,..-,ml}ﬁx,--.,mfl € D so that ¢(a,,, ~-"""z) = by, oy In this case, B is
said to be a (generalised) o-homomorphic image of A. If such a ¢ is a one-
one correspondence, then A4 is said to be o-isomorphic with B.

A nonvoid subset J == 4 of elements of a Po-algebra 4 is said to
be a @o-ideal if

[=e]
e o)
D M an,..,n, €J, Wwhenever {a’n,,...,nk}n,,‘..,nkzl €D, Ay ..y € J
Ty eens =1
foreachng, ...,n, = 1,2, ...

2) aedJ, wheneverb C a,beJ.
A @o-ideal P is said to be prime, if U Unyy.oimy, € P,

My eees Mg = 1
{t,, ..., ”k}:‘?”k= 1 €D implies az, 7, € P for suitable positive integers
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Tys Mg .., Ny- (Some authors speak about dual ideals. M. H. Stone
sometimes uses the term w«-ideal. For thc purpose of mathematical
logic, the used kind of ideals seems to be more convenient.) — Note
that in general, any of the considered assertions possesses a correspond-
ing dual one, the dualisation being left to the reader.

The @*o-quotient algebra A[J of the Po-algebra A:

Let 4 be a Po-algebra, J a Do-ideal in 4. Then by the @*g-quotient
algebra A[J we shall understand the generalised o-algebra of the classes

X =1[z], Y =[y],... (with 2,y,...e 4 and [z;] = [2,], i. e. 2, =,
(modJ), whenever z;N¢ = x, M ¢ with a suitable ¢ e J) with respect
to the family @D* of marked sequences {X, .. "k}:‘?’-w”‘k:l =
{[xnl,...,nk]};ﬁ,..., n=1¢€ @* (where {z,,, ...,nk}rfi, sy =1 € D). — To see that
A|J really becomes @*g-algebra, it is sufficient to point out two facts: |

First, ; = @, (modJ), if and only if ¢*= (z; U x,") N (2," U x,) € J,
c* having the property x; M ¢* = x, N ¢* = x; N x,.

Second, z,, oy = Yny,. (modJ) means that

e Mg

’ ’ . .
ey, = @y ey Y Ymayymy) O @y, 0y I Yy, ..ymy) € what implies

o0
* [ee] *
{cm,...,nk}m,.-.,nk=1 e ® and therefore ¢ = ' . Cmn.--,mk e J.
m,,...,mk=1
Hence L2 N e = Yn,..,n, O cfor each ny, ..., n, =

@ o]
=1,2,... s0 that ( ) Zp,...n) Ne=( M Yny,..on,) O ¢ and

n,,...,nksl Ny, ...,nk=l
0 @ o
U (xn,,...,nk Ne)=( U Loy, ..., n,c) Nec= U (?/n,,..‘,nk MNe)=
n,,,,,,nkzl n,,...,nk=1 n,,...,nk=1

=( U Yn, '“’"‘k) M ¢ by a generalised associative and resp. distri-
n,,...,nkzl .

butive law (see (II) below).

The @o-subalgebra of a Wo-algebra:

A ®o-algebra A is said to be a DPo-subalgebra of the Yo algebra A
if

() AC4

2yoC¥

(8) The operations in the sense of 4 have the same effect as the
operations in the sense of the whole 4.

(When especially 4 is a o-algebra then the condition (2) trivially
follows from (1), (3).)
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Known theorems.

Let us collect the essentially known lemmata and theorems needed
in the sequel. (We use the already introduced symbols.)

(I) (De Morgan identities.)

0 o
U a;ll, s g - ( n Ay, ...,nk)l
Nyeeesy nksl My, ...,nk:I
and dually.
(II) (A generalised distributive law.)
o fee) fee]
( U an,.., nk) Oc U b, ml) = U (an,.-..,nk N bm,,...,ml>
N1y ooy Np= My ey My =1 s nes Mgy My ey My

and dually. (Proof with the help of De Morgan identities, see G. BIRKHOFF
(-

(ITT) (Immerging of a @g-algebra in a g-algebra.)

Any ®o-algebra A can be immerged in a ¢-algebra A under pre-
serving the @o-operations. (4 is then a @o-subalgebra of the o-algebra 4).
(Proof by completing 4 into A with the help of Mc Nr1LLE [7] cuts.)

(IV) (The first lemma on generalised o-isomorphism).

Let the Wo-algebra B be a (generalised) o-homomorphic image
of the @o-algebra 4, under the proper homomorphic mapping ¢ of A4
onto B. — Then the @*o-quotient algebra A/J, where J = ¢~(1)
is a @o-ideal in A, is o-isomorphic (in the generalised sense) with B.
(Proof by an obvious generalisation of the well known argument of
Abstract Algebra on account of (IT) and of the justification of the defini-
tion of the @*¢-quotient algebras.)

(V) (The second lemma on generalised o-isomorphism.)

Let A be a o-algebra, 4 a @o-subalgebra of A, J a g-ideal in A.
Take (4,J) = Z (2] D 4 for the @g-algebra (with the same fundamental

red

sequences as in 4).

Then 4 . J is a @g-ideal in 4 and we have the generalised ¢-iso-
morphism (in the sense of the above definitions)

A, )] =~ A|A.J

given by the one-one mapping ¢([2]) = (x) ¢ A|AJ of the D*o-quotient-
algebra (4, J)/J into the ®*o-quotient-algebra A/A .J (if ()
denotes the class of elements of 4 congruent to z ¢ 4 modulo 4 . J.)

(Proof by the well known argument using (IV) (above) to the gene-
ralised proper homomorphic mapping x — [2] of A onto (4, J)|J.)
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(VI) (Theorem of Loomis [6]).4)

Any o-algebra 4 can be g-isomorphically represented as a quotient
o-algebra /3§ of a suitable o-field  of sets taken modulo a o-ideal ¥,
A = F/3

Let us return to the set representation of countable generalised
o-algebras with a countable family of marked sequences.

Theorem l. Let A be a countable @o-algebra with a countable family @
of marked sequences. — Then there exists a set field a and a family ¥
of marked sequences of sets in a so that the Yo-algebra a is o-isomorphic
(in the generalised sense) with the @o-algebra A.

Proof. Let A be the c-algebra with the given ®o-subalgebra A,
according to the above lemma (I11).

Let A == §/J be a o-isomorphic representation of A by the quotient
o-algebra of the o-field g (of subsets X, Y, ... of a suitable set F) divided
by the o-ideal J, according to the lemma (VI) of Loomis. Let ¢(z) =
= [X] e F/J (with v e 4, X € F) be the representing one-one mapping
of A onto /3.

Then p(4) = /3 is a countable @G-subalgebm of the o-algebra
/3, D consisting of the sequences {gp(w,, . i s =1  With
T, ., nk}aaﬁ, =1 € @. Choose one representative set X ¢ g in each of the

countably many classes [X] e §/ and form the (of course countable)
set field generated (in §§) by these representants. Further, consider the
smallest countable family @, of sequences (of members of the already
formed set field) fulfilling (1) to (5) of the introduction and containing any

{Xml, s ml}:rgl, sy = IWith {[Xm,, s ml]}gz),,...,ml: 1 34 (1(’ with (p(xm,, e ml):
= [X'”l""”"z] (my, ..., my = 1,2,...) whenever {mmh_.,ml};’h m,=1 ed

in 4). Finally, adjoin the corresponding set sums Z Xm“""’”z

m,,.“,ml=1

and set products H th_”’ml to the already formed set field.
m,=1

My eney
In this way, we get a countable @,c-algebra, i. e. set field, say ¥,
with the countable family @; of marked sequences. Obviously
&*C & (because {6/3 is a @o-algebra) and using the symbols of the above
lemma, (V) we can write § = > [¥] = (F*, ).
YeG5*

Now, taking @, as thedfa,mily of marked sequences of & =

= (F*, J) we easily see that the derived family of marked sequences

of the quotient algebra /Y (in the sense of the above definition of
4) Restated in BIRKHOFF [1]. A simple proof can be found in SIKORSKI[11].

For another proof and a topological strengthening of this Loomis theorem, see
RI1eGER[10].
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a generalised quotient o-algebra) equals the original family & ot
marked sequences of ;j/%, as corresponding to @ of 4. Hence using
the lemma (V) we get the generalised o-isomorphisms

A = (F* /S = T (*)
given by the one-one mappings g(X) = [2]<><(X) ¢ F*/F*. J if X € F*,
xed.
o

Since *. J is a countable subideal of the o-ideal § (of ) hence

to each class (X e F*/F*. J we can form the set X= I_[ Y e [X].
YelXD

Let us prove that also X=Y. [ [ Z with an arbitrary Ye (X ). —
2GS
First,wehave Y,. [ | Z=Y,. [ [ Z whenever ¥, =7, (modF*.Y)
ZeG* 3 23 g

(with Y,, Y, e §*) because Y, . Z = Y, . Z with a suitable Z ¢ F*. J.

Therefore X — ﬂ Yo 1"[ Y. I—[ Z=Y,. | Z withan
YelX) Ye{XD> ZeG*J ZeF* G
arbitrary Y, e (X) e F*/&F*. . On the other side, since Y, . Z e (X ) with

arbitrary ¥, e (X), ZeF*.J weget X = [[ YC [] ¥,.Z=

Ys(X} 'z € F*.
=v,. [] 2
ZeF* 3

Now, we have to show that the sets X form a set field a (of certain

subsets of the set n Z) and, moreover, that aisthe desired Yo-algebra
ZeF*. 3

(of sets) o-isomorphic (in the generalised sense) with the @*g-algebra
F*/F*. I under the one-one correspondence (X> <+ X with X e §*.
(a also is a representative Wo-set field of the @o-quotient algebra %/S
(but, in general not of F*/F*. ¥) though this fact will not be used in the
sequel.) — Thereby, the proof W111 be completed on the ground of the
above generalised o-isomorphisms (*).

Indeed, first < X,> == (X,) implies X, + X, (assumed X,, X, e 3*,
of course) by [X,] = [Xl-] (1 =1, 2) and by the above one-one ¢-iso-
morphic mapping [X] <> X )(*), using the expression X= H Y for X.

Ys(A)
Second, use the other expression X = ¥ H Z (Y e <X ) for X and
ZeF* I
suppose X, € & X, ., nk}m,. 1D and hence z X, € T,
© ,nk—l
]._.[ ’nx E %*
n,,...,nk=1
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Then z Ko = 2, Xy Y) =
Ny, .. N1y ey Mg =1 YeF*3
o0

= > (Xpyoon, - l—[ Y) = Z an ,n, and analogously

Mayeoiy = 1 Freges any=1

—_— w

H Xn.,...,n,c:( H Xn., ,nk( H Y)=
'n,,.‘.,nk:l YeG*.3

0 o]

= 1_[ (ank 1—[ Y) = 1—1 an....mk-

My g, =1 YeG*3Q n,,...,nksl

From these facts we easily conclude that a has the desired
properties with respect to the famlly ¥ of marked sequences

{th_. "k}m,. =1 whose members Xn1 Jny correspond one-by-one
(by {(X»«- X) to the members {(X,, . nk>};ﬁ""’nk=1 e OF of marked
sequences of F*/F*. J, q.e. d.

Lindenbaum®) algebra of the lower predicate calculus.

For the lower predicate calculus, let us make a systematical use of the
standard formulation and of the symbols of HIiLBERT, ACKERMANN [3],
P. 53 — §), with the original numbering of axioms and rules of inference.
The basic notions of the predicate calculus will be assumed as known and
the reader may refer to [3].

Let A, B,E, ... be formulae (Formeln) of the lower predicate
calculus. Considering the equivalence relation (between formulae) given
by the fact that U ~ B is an inferred formula (abgeleitete Formel) (i.e.
that both A — B and B — A can be inferred from the axioms by the
calculus) denote by ||, |B], €], ... the classes of mutually equivalent
formulae. — As it is well known and can be easily proved, these classes
form a Boolean algebra 4 under the following definitions:

A U (8] = 2 V B,
A O [B] = [A & B,

5) The name of the essentialy known concept is chosen in honour of ADOLF
LINDENBAUM, a Polish logician and mathematician murdered by the nazis. —
LINDENBAUM, TARSKI and MOSTOWSKI iniciated the application of modern alge-
braic notions to mathematical logic. Comp. e. g. MOSTOWSKI [9].

8) It only may be pointed out that we interpret the symbols of {3] (to be
used in the sequel) as belonging all to the usual mathematical language and as
denoting elements of the calculus or certain finite sequences of them, the s. c.
formulae, i. e. these signs do not belong to the calculus itself. — This is in accord-
ance with the recent conception of a structural (s. c. syntactical) mathematical
theory of a logical calculus the objects of which need not be symbols since they
can be e. g. certain geometrical or topological entities or even switching electrical
circuits. — Hence e. g. the letter x is a sign of an individual variable, not the va-
riable itself.
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(assumed there is no individual variable occuring as free in one and as
bounded in the other of the formulae 9, B; this allways can be satisfied
without loss of equivalence, by a suitable change of bounded individual
variables according to the rules d) of [3]),

0 =R, 1=, 0=,

A| C |Y|, if and only if A — B is an inferred formula. Now, denote by
24, Xy, ... all the countably many individual variables. Somewhat less
known is the fact that |3xB(x)| e 4 and |(2)B(x)| € 4 (provided B(x)
containing the individual variable  in a free manner only) are resp. the
L. U. B. and the G. L. B. of the elements |B*(x,)| ed (n =1,2,...),
the formulae B*(x,) being given by substituting the free individual
variable z, for z in B(x)?) — under a preceding suitable change (in the
sequel denoted by the asterisk) of the bounded variable ,, when occurring
inB(x). (The last is always possible without loss of equivalence, on ac-
count of the rules ) (Umbenennungsregeln fiir die gebundenen Variablen)
of [3].)

Indeed, considering the case of the G. L. B. we observe that the
axiom e) of [3]: (x)F(x) — F(y) (with the help of rules of substitution
o), &) of [3]) says |(2)B(x)| C|B*(x,)| for each n=1,2,...— On the
other hand, let us recall the scheme y,) of [3]:

If A — B(x) is a derived formula where the individual variable x
occurs in B(z) freely and does not occur in U at all, then A — (x)B(x) is
a further derived formula.

Hence if || C |B*(x,)| in 4, i. e. A~ B*(x,) are derived formulae
for each n == 1, 2, ..., then, of course, there is a free variable z,, = x not
occurring in 9 at all so that U — (#)B(x) is a derived formula, i.e.|A| C
C |(@)B(x)| in 4.

The dual case (of the L. U. B.) being analogous with the axiom
f) instead of e) and with the scheme y,) instead of y;) (of [3]) our assertion

is proved. — Hence we can and will write
o]

U 8%(,)| = [3xB(x)|

N 19%()] = |2)B()

for the ¢«algebraically’’ defined countably infinite joins and meets in the
LinpeNBAUNM algebra 4.8)

Now, observe the usual definiton of the notion of a formula. (See [3],
P. 53, 54.) We easily see that 4 becomes, moreover, a @o-algebra in the
following sense:

7) Notice that, of course, x = x,, for a suitable positive integer n.

8) It is remarkable that the result of each of the defined infinite operations
in 4 is given by a finite inference process of the calculus (in each individual case).
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Consider all the multiple sequences of the forms {|F*(x,)|} -1,
{‘G*(xm’ znz)l}z, ne =15 {*H*(xm? Lny> xna)‘}’z, na, Mg =15 * "+ where F()y G(., ),
.y .5.), ... are predicate variables. Let us form the smallest family @
containing these sequences and fulfilling the conditions (1) to (5) of the
introduction. Then (6) is true too (by the already stated interpretation
of the quantifiers by countably infinite joins and meets resp. in 4) and @
becomes the family of all the sequences of the form

{{A¥ (@, @,y <o T [Iie, . ny =1 Where U(w, y, ..., w) is a formula contain-

ing the £ different free individual variables z, ¥, ..., w. Therefore we
can conclude (with the help of the above thm. 1) by

Theorem 2. The Lindenbaum algebra A (of the lower predicate calcu-
lus of HILBERT-BERNAYS) ts a countable @o-algebra withthe (already defined)
countable family @ of marked sequences and A is c-isomorphic (in the
generalised sense) with a Yo-field a of sets.?)

Now, notice that any prime @o-ideal P of 4 generates a proper
@o-homomorphic mapping of the algebra A (of classes of logically equi-
valent formulae) onto the two element algebra (0, 1) of the “truth” =1
and the <“falsehood” = 0, i. e. P gives an interpretation of formulae
as sentences. To any predicate variable, we namely define a k-tuple
relation K(., ., ..., .) between positive integers n,, n,, ..., n, as fulfilled
when |K(z,,, ..., %,)| € P.

By induction (under the usual interpretation of logical junctives
and quantifiers) we easily see that any formula 9 becomes then a sentence
about positive integers which should be taken for true if and only if
|A| € P. The rigourous details of these considerations would require the
introduction of certain semantical notions being of less interest here.
Nevertheless, it may be sufficiently clear that the (somewhat strengthen-
ed) mathematical kernel of the GopEL'S completeness theorem?) (for
the lower predicate calculus) can be now stated as follows:

Theorem 3. To each non-zero element || == 0 of the Lindenbaum
Do-algebra A there is a prime @o-ideal P which contains |U|. The (somewhat
weaker) formulation in terms of logic is as follows:

Each formula B of the lower predicate calculus either is a derived
formula (then it is “identically true’ in each interpretation) or B can be
interpreted as a false sentence about positive integers (by means of a suitable
interpretation.) (We put, of couse, A = B.)

9) It can be shown, that a is a subfield of the set-field of Borel subsets of
Cantor discontinuum, see RIEGER [10].

The finitary isomorphism is essentially well known, comp. e. g. Mos-
TOWSKI [9].

10) In its whole sense (of theoreticallogic), this theorem is a syntactically-
semantical assertion the complete formulation of which is complicated and,
moreover, till now not wholly unified, for certain rather philosophical aspects not
to be discussed here.
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(The (unessential) strengthening in comparison with the original
result of GOpEL [2] (essentially restated in HILBERT-ACKERMANN [3]
and in HiuerT-BERNAYS [4]) consists in the fact that our algebraical
formulation gives, indeed, a simultaneous consistent interpretation of all
formulae (this interpretation including the being true of ) whereas
originally, the true intrpretation of the isolated formula 2 was construct-
ed only.)11)

Proof of the theorem 3.12)

Apply theorem 2 in choosing a point & in the nonvoid set S e U
corresponding to the || ¢ 4 in the set representation of the LINDENBAUM
Do-algebra A of the lower predicate calculus. Then the prime @o-ideal Py
in 4, corresponding to the prime ¥o-ideal P} in a, where P} consists
of all the sets of a containing the point &, furnishes an example of a prime
ideal of the desired kind.
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