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SIMPLE POLYNOMIALS.
MILOS KOSSLER, Praha.
(Received September 1st, 1950.)

We say that (1.1) is a simple polynomial in the closed circle |z| < 1,
if there is a 7 > 1 such that P(z;) = Pl(z,) for z; & 25, 24| <1,
|z5| < 7. The necessary and sufficient condition for (1.1) to be simple
is that the system of equations (2.5) has no solution (u, ) such that
— 2 < » < 2. Eliminating 2 from (2.5), we get the condition in
an algebraic form: the resultant of (2.5) does not vanish in the
interval — 2 < u < 2. Detailed discussion of P(z) =z + ag2% +
+ ag2s.

I. The fundamental theorem. If a polynomial
w=P(z) =2z + ap2® + a32® + ... + a,2", |a,| >0 (1.1)
sets up a one-to-one corespondence between the domain |z| < r > 1
and a certain domain W of the w plane, we will say that (1.1) is simple
within and on the closed circle |2| < 1. In this definition the condition
r > 1 is essential.
Our aim is to deduce the necessary and sufficient conditions for

the coefficients of such polynomials. If P(z) is such a polynomial,
then the increment ratio

P(z) — P(z,)
2 — 2

+ a, (2371 4 2p-%2, 4 ... 4 2271 (1.2)
is different from zero for every two different or equal values z,, z,
within or on the closed circle |z| < 1 and this is the only condition
for the simplicity of P(z). But it is not necessary to study all such
couples of numbers z;, z, because if the condition (1.2) A(zy,2,) =0
is satisfied for every two different or equal values z,, 2z, on the circle
|z| = 1, then and only then the polynomial P(z) is simple within and
on the cirele |z| < 1. It is obvious that this condition is necessary for
the simplicity on the circle. But on the other hand if this condition
is satisfied on the circle |z| = 1, then the boundary of the closed domain
W is a closed contour C

w, = P(e#), 0 < 9o < 20

A2y, 25) = =14 ay(z; + 2,) + ... +



where every value w, is attained only once in the interval 0 < ¢ < 27,
which means that C'is a simple closed contour. Itis quite easy toshow
that this property of the contour C' is sufficient for the simplicity
of P(z) within and on the circle |z| < 1.%)

Now suppose that P(z) is not simple in the closed circle |z| < 1.
Then there must exist at least two different or equal numbers z,, z,
on the circle |z| = 1 for which the ratio (1.2) vanishes

n
A(zy, 25) =1+ zz:ak(z’{~1 + 2B-22, 4 ... 4 2E-1) =0
and therefore the conjugate complex number (1.3)

- “_ [ 1 1 1
,Za) =1 — e+t ——]=0
A@nz) =14 2@ Rl LR zg—l)
vanishes too. The two algebraic equations (1.3) for z,, 2z, or, what is the
same, the two equations

1+ Zak(z’f—l + 222, 4 . 2k =0
2 (1.3)

. n
2P-1. zg—1+2akz;‘-kzg—’°(z’f*1 4 2k% 4 . 42 ) =0 }
2

must therefore be satisfied by at least one couple of numbers z;, z,
on the circle |2| = 1. If such a couple does not exist, then and only
then the polynomial P(z) is simple within and on the circle |2| < 1.

The first of the equations (1.3) is identical with the associated
equation of J. Dirupoxyg.2) We shall therefore denominate the
system (1.3) as the system of two associated equations to the
polynomial P(z) (1.1).

Therefore our fundamental theorem runs as follows: The polyno-
mial (1.1) is simple within and on the circle |z| < 1 if and only if there
exists no couple of numbers (z, z,) satisfying the associated system
(1.3) and such that |z;| = |2| = L.

A further aim of this investigation is to simplify this theorem.

I1l. Some properties of the associated system. Thissystem is symme-
trical in z; and z,. Thus if (2, 2,) is a solution, then (z,, 2,) is a solution

11 11
too. But it is quite easy to show that also (_—, :—) and (_—, _—) are
2 2 2y 21

1) The proof of this theorem due to G. DARBOUX (Legons sur la théorie géné-
rale des surfaces, T.l. p. 173) can be found also in every textbooke. g. E.T. COPSON:
An introduction to the theory of functions, p. 184.

2) J. DIEUDONNE: Polynomes et fonctions bornées. Annales de 1’école norm.
sup. (3) 48, 1931.
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solutions of the system. If (z,, 2,) is a solution of (1.3), then also the
conjugate numbers of the left sides of (1.3) are zero

14D @@t + 2822, 4 ... - 21) =0

1
k=22,

n 1 1
N +otgr) =0

21 2,

this we can simplify the fundamental theorem. If P(z) is simple then
it is obvious that the system cannot have a solution (z,, z;) such that
|21] £ 1, |25] £ 1 neither can it have a solution with |z, > 1, |z,| > 1.
But the same reasoning shows that the possibility |z,| = 1, |z,| &1
is excluded too. Therefore the fundamental theorem can be stated
as follows:

The polynomial (1.1) is simple within and on |z| < 1 if and only
if all solutions (24, 2,) of the system (1.3) have the property

[22] <1, |zo] > 1 or |zy] > 1, |2o) < 1. (2.1)

The method of resolving the assoc. system (1.3) is a purely alge-
braical problem and the symmetry of the equations suggests that the

11
This proves the asertion that (_—, _—) is a solution of (1.3). Knowing

x
substitution z; = @ . y, 2, = — can simplify the equations. If we use
v .

the substitution then both numbers z, and z, have a modulus equal
to unity if and only if |#| = 1 and |y| = 1. The assoc. system appears
now in the form

n 1 1
l—}—;akxk‘l(yk‘l—i—yk—‘*—}- +'yk—-§+’T1)= 0

x
2 : y : (2.2)
an—1 | ;ﬁkx"‘k(yk‘l + yE34 .+ JE -+ :;/—le) =0
A further substitution 1
Yt = (2.3)
is obvious. The functions in the brackets are
1 1
y—{——g;—: u = P,(u), y*+ 1+y—z= u* — 1 = P,(u),
k-1 k-3 1 1 _
LS M A R g8 + g1
< k=t (2.4)
: k—r—1 k—2r-1
= 2 Ut =P
oo



Instead of (2.2) we have now

n n
1+ > a1 Py (u) =0, an~1 4 > gan—*P,_ (u) =0 (2.5)
2 2

If the polynomial (1.1) is simple, then there exists no solution
(u, ) of the system (2,5) such that » is a real number of the interval
—2 < w< 2. This condition is necessary and sufficient for the
simplicity of (1.1). The necessity of this condition is obvious, because
if such a couple (u,x) where — 2 < u < 2 exists, then, as conse-
quence of (2.3), the number y has a modulus equal to unity and z;, =

=X .Y, 2y = g— That means |z;| = |2,| = |2| which contradicts (2.1);

therefore the polynomial (1.1) is not simple. The sufficiency of the
condition follows from the fact that if u is always either a real number
|u| > 2 or a complex number then y has a modulus different from

%1

unity and therefore —| = |#?| = 1. The meaning of this is that the
2

assoc. system (1.3) has no solution (2,, 2,) with |2,| = |2,| = 1 and the
polynomial (1.1) is simple.

The decision about the simplicity of the polynomial depends
therefore only on the properties of the numbers u in all possible couples
(u, x) and does not depend on the properties of #. The number of solu-
tions (u, x) of the equations (2.5) can be finite or infinite. The last
case takes place if and only if the left sides of (2.5) have a nonconstant
common divisor. In this case the common divisor is a polynomial
in » and .

Ill. The associated resultant. If the equations (2.5) have not
a common divisor, then there exists only a finite number of solutions
(u, x) of the system. The numbers u in these couples are roots of the
resultant. To form the resultant we eliminate, using the method of
EuLER or Bfizour, the number x from the equations. The resultant
is a polynomial of a degree not exceeding N = 2(n — 1)% in w:

Ru)=AguY + Au¥-1+ ...+ Ay_ju+ Ay =0 (3.1)
where A, are polynomials of the coefficients
Ay, Ay, Oy, A, - - -, Oy, Gy

and all 4, are real numbers. For special values of the coefficients a,
the degree of R(u) can be less then 2(n — 1)2. If e. g. a;, = 0 for
k=2,3,...,n —1 and |a,| > 0, then the equations (2.5) are

14 aan—1P,_;(w) =0, 2=t + @,P,_,(u) =0

and the resultant is R(u) = 1 — |a,|tP3_,(u)
the degree of which is N = 2(n — 1) only.
8



In the case when no common divisor exists, the necessary and
sufficient condition for the simplicity of (1.1) is therefore:

The resultant (3.1) has no root in the interval —2 < w < 2.
Now suppose that the polynomials (2.5), which are non-identical, have
a greatest common divisor Q(x, u), where Q(z, u) is a polynomial in x
and u. We shall prove that in this case (1.1) is not simple. Is the poly-
nomial @ of degree n, 2> 1 in % and of degree n, > 1 in x, then we can
always find a couple (2y, u;) where — 2 < u; < 2 and ; = 0 so that

Q(x,, u;) = 0. But then the number y defined by u, = y + }— has
Y

modulus |y| = 1 and therefore, as we have proved by (2.5), the poly-
nomial (1.1) is not simple. The same reasoning holds if n, = 0, n, > 1.
In the remaining case n; => 1, n, = 0 the common divisor is a poly-
nomial @(u) of  only. Is now u, some root of Q(u) = 0 then the first
equation (2.5) should be satisfied by u, and every z e. g. x = 0, which
is impossible. Therefore the divisor ¢ cannot be a polynomial in %
only. But it is a well known theorem of algebra that the divisor Q(x, »)
exists if and only if in the resultant (3.1) all coefficients 4, are zero.
Thus the final form of the fundamental theorem is as follows:

The polynomial (1.1) P(z) is simple within and on
the circle |2l <1 if and only if the associated resul-
tant (3.1) R(u) does not vanish identically and has
no real root lying in the interval —2< < 2.

It is very probable that the resultant R(u) can never vanish
identically. But.I cannot prove this hypothesis.

As the coefficients A4, of the resultant are real numbers, the de-
termination of the number of roots in the interval —2 < w < 2 is
a finite and purely algebraical question. We can e. g. use the theorem
of STurM or some equivalent method. But all these methods are very far
from being satisfactory to our purpose. I do not know a general theorem
of algebra which enables us to ascertain the nonexistence of roots
in a given interval. '

IV. Some applications. For the polynomial P(z) = z + a,z? the
assoc. system (2.5) is
1+ aeu =0, x4+ a,u =0

and the ass. resultant (3.1)

1 —aza,u? = 0.

The roots of this equation are u; , = + and therefore the poly-

||
nomial is simple it |a,| < }. Is |a,| = } then the polynomial is simple for
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|2l < 1 and on the limiting contour w = P(ei?) the derivative P’(z)
vanishes for z = —-2—2-2 . This result is trivial and follows directly
from the condition (1.2)
Az, 25) = 1 + ay(z1 + 2,) =0
[ S 1z < 1.
In a polynomial of third degree
P(z) = z + ay?® + ay?®, (4.1)

for every

we can always suppose that a, is real and positive, because if (4.1) is
simple then also e~#?P(zei?) is simple for every ¢. The ass. resultant
(3.1) is

R(u) = (1 — a3(u? — 1)) — u?(a, — aziy(u? — 1)) .
1))=0 (4.2)

- (@y — agas(v?
The condition for simplicity is therefore that this equation has not
a single root — 2 < % < 2. Is specially a, a real number the resultant

is
(I —ag(w* — 1)%{(1 + ag(u? —1))>2 —alu?} =0 (4.3)

1
The roots of the first bracket are given by u? = 1 + P It is always
3

u2 > 1 because ag > 0. The first necessary condition is therefore
1
1+—>4,a03<}. . (4.4)
ag
The second bracket of (4.3) represents two equations
asu® 4 a,u + (1 —az) =0 (4.5)
The roots are complex if a << 4ay(1 —az) and are real if a2 >
= 4a(1 — ay). In this case the four roots of (4.5) are
1 e —
U= {4 a, £ |[a2 —day(1 —ay)}.
2ag
The smallest modulus of these roots must be greater than 2:

|as| — V“g — dag(l — ag) > 4a,
or
0 < Va2 —4ay(1 — a5) < |ay| — 4a,.
That is
1 + 3a, 1

da; < |a,| < — o B <s

10



The n. a. s. conditions for the simplicity of P(z) are therefore
If 0<ay<<1 then |ay] < }(1+3a5) < ¢
If 1 <az;<<] then a2 < daz(l —a5) < 8
If a; = 1 both bounds for |a,| in (4.6) are the same |a,| < £.

(4.6)

The space of admissible coefficients (a3, @,) is therefore limited
by two straight lines

ay = =+ (1 + 3az) in the interval 0 < ay < 1,

by two ares of the ellipse

a, =+ V4a3(l —ag) if F < ay <}

and by the ordinate a; = 3.
The ellipse touches the straight lines in the points a3 = 1, a,=
= + ¢. If the point (a3, a,) is situated on the boundary of the space
then for » << 1 the point (a2, a,r) belongs to the space and therefore
P(z) is simple within |z| << 1 but looses the simplicity on the circle
|2| = L. The radius of conformal mapping is therefore exactly equal to
unity. The reason for the loss of simplicity on the circle |z| =1 is
different according to the case considered. In the case 0 < a3 < 1,

|as] = %(1 + 3a;) one root of the equation P'(z) = 0 is z = — 1. Both

: 2l/2
roots of P'(z) = 0 are situated on |2| = 1 if a; = 1, |a,| é—lg/z— But
it l<ag<l, |ay = V4a3(1 — ag) then the contour w = P(e??) has
a point of contact, but both roots of P'(z) are |z, ,| > 1.

This result enables us to calculate the radius g of conf. mapping
for every polynomial

H(z) = 2z + A,22 + Ag28, (4.7)
where 43 > 0 and A4, is real. Is p this radius, then the polynomial

1
?H(gz) =2z + A,02% + A,0%3

must have the radius of conf. mapping equal to unity. An easy calculus
shows that

if 422> 154, theng:];{[A2I+VA§_3A3}
if 154,> A2 > 84, then o — |44, — 42:24, (4.8)
if 84, > A42>0 theng:l:l/éjf3

After this digression we return to the discussion of the resultant
(4.2) if a, is a complex number

a, = gei?, p >0, ¢ &= 0,7, cos2¢p = 7. (4.9)

11
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The resultant is now
R(u) = (I — aj(u® —1)?)* —
— 02u2(1 — 2rag(u® — 1) + a2(u2 — 1)2) = 0 (4.10)

Is ag > % then for w2 = 0 the left side of (4.10) is zero or positive and

— 1
for w2 =1+ o the left side is negative and therefore the resultant
3
has a root 0 < 42 < 4 and the polynomial is not simple. The first
necessary condition is therefore

as; < % (4.11)
Now the left side of (4.10) must remain positive in the interval 0 <

< u? < 4. Therefore the nec. a. s. conditions for the simplicity are

. 1 —a2(u?—1)2)2
1 2 £ ( 3
<3 0 <0§1,?z§4 u2(1 — 2a5T(u? — 1) + a2(u? — 1)?)’

(4.12)

where the symbol inf f(z) denotes the lower bound of f(z) for all & <
ala<b
< @< b. Is the lower bound attained for u? = 4, then the n. a. s.
conditions are
(1 — 9a2)?
4(1 — 6asT + 9a2)

This occurs e. g. always when T = cos2¢ < 0. A nearer analysis, which I
do not intend to reproduce here, shows that the conditions (4.13) are
n. a. s. not only for negative 7 but also for all

—1 <7< |35 43 = 0.999136 ... (4.14)

The space of admissible values of g is limited by the axis o = 0 and the
curve

a; < %, 02 < (4.13)

4
6
S

1 — 9a,?
2]/1 — 6azT + 9a2 '

But if 7 is greater than the bound (4.14) then the second condition (4.13)
is only necessary, not sufficient. The space of admissible values of p
is then limited by two different curves similarly as for real a,. In the
interval 0 < a3 < 1, the limiting curve has always the form (4.15) but
the second limiting curve is very complicated and the equation of this
curve can be calculated by elimination of  from the two conditions
R(u) = 0, R'(u) = 0.
The maximal values |a,|, @; are attained by the polynomial z -
22
z
3
For polynomials of higher degree than three the discussion of the
resultant is not an easy task because not only the resultant is of high

0= (4.15)

1
-+ + 3 2%, which is simple for |z| < 1 only.

12



degree but the explicit calculation of the functions of STurM surpasses
the possibilities of a normal man.

But two necessary conditions for the last two coefficients a,_; and
a, can be deduced from the ass. equation of J. DIEunDoNNE

si

1+ aw .n2<p + aga? sin3¢
sing

-y Sinng

0.

+ ...+ ax"

sing sing

If the polynomial (1.1) is simple then for every ¢ the roots z of this
equation must all have modulus greater than unity. Therefore if we put
@ = 0 the equation

P'(x) =1 + 2a,x + 3az2% + ... + na,z"~1 =0 (4.16)

must also have only such roots, which means
1
@, < —. (4.17)
n
. 41 .
But if we put ¢ = o the ass. eq. is

. T

Sim —

n
dor @ =0

T

sin—
n

1+ ax

and therefore
Ian_l| < 1. (4.17 bis)

This bound for a,, _, is not the best possible for all n, because in the case

2)/2
. On the other hand the bound

n = 3 the exact bound is |a,| <

(4.17) is the best possible because e. g. the polynomial z + a,z” is simple
1

for every |a,| < -

In the general case of a polynomial P(z) (1.1) a lower bound for the
radius of conformal mapping can be easily deduced. The radius is always
greater or equal to the positive root of the equation

1 — 2|ay|z — 3|agla? — ... —n|a,|an~1 =0 (4.18)
The proof of this theorem is easy. From (1.2) follows that

‘A(le 22)] 2 1— {|“2|(|21{ + Izzl) + Iaal(]zllz +‘l21 . 22] + Izz|2) + ...
R ol A LA Lt S S A Ll ) S

Is now |z,| < |2| then

IA(zv zz)l =>1— 1;2—:2 k]“lrl . |Zl|k_1

13



and this proves the assertion above, because for
0= o] S ol < @
the increment ratio 4(z;, 2,) does not vanish.

The family of polynomials
n
P(z) = z 4+ Dayzk, (4.19)
2

where n and all |a,| are given numbers has therefore the following
property:
The smallest radius of conf. mapping belongs to the polynomial

n
P(z) =2— 22: || 2*

and this radius is equal to the positive root of the equation Pj(z) = 0.
A consequence of this theorem is that all polynomials (1.1) where

1 —2|a,| — 3lag| — ... —n|a,| =0 (4.20)

are simple within |z| < 1. This condition is n. a s. for the polynomials
P,(z), but for other members of the family the condition (4.20) is only
sufficient, not necessary.

It is obvious that the theorem (4.19) remains true also for the
family of power series

fe) =2+ ;akzk, (4.21)

where |a,| are given numbers. The only difference from the polynomials
is that the equation (4.18) needs not always have a positive root within
the circle of convergence of the series. In this case the radius of conf.
mapping is, for all members of the family, equal to the radius of conver-
1
L has the
radius of convergence » = 1 and all members of the family are simple
within |z| < 1, because

gence. Thus e. g. the family of series (4.21), where |a,| =

1 1 1 72
1—"(?-'—3—2-—*— ces + ﬁi"*‘ ...) == 2——6—>O-
The method described in the first three paragraphs is by no means
~limited to the polynomials. The same method can be used in every case
where the increment ratio A(zy,z,) of the function in question can be
explicitly calculated. Such functions are e. g. all rational functions

1+ a2+ ap?+ ...+ a,z"

e P s B2® I ... & byt
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where the denominator does not vanish in the circle |z| < 1. The method
of forming the associated system (1.3) and the ass. resultant (3.1) does

©
not change. For a power series z + Zakzk with a radius of convergence
2

r > 1 the system of assoc. equations (1.3) remains unchanged and also
the fundamental theorem in the form (2.1) holds true. But the forming

of the assoc. resultant (3.1) is a problem of transfinite algebra. I will
return to these questions by another opportunity.

15
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